培训强化学习者在多种环境中不断学习是一个具有挑战性的问题。缺乏可重复的实验和标准指标来比较不同的持续学习方法,这变得更加困难。为了解决这个问题,我们提出了Tella,这是一种测试和评估终身学习代理商的工具。Tella为终身学习代理提供了指定的,可重复的课程,同时记录详细数据进行评估和标准化分析。研究人员可以在各种学习环境中定义和分享自己的课程,或与DARPA终身学习机(L2M)计划创建的课程相抵触。
translated by 谷歌翻译
我们提出了一种基于神经网络“指令”概念来解释的新方法来解释AI(XAI)。在这种情况下,我们展示了超人神经网络如何指导人类学员作为传统Xai方法的替代方案。具体而言,AI检查人类行为,并计算导致更好的性能的人类策略的变化。与JHU / APL开发的AI播放器进行合作卡游戏的实验Hanabi建议这种技术使独特的贡献能够在提高人类性能的同时解释性。一个指导性AI的重点领域是人类实际战略与他们自称使用的战略之间出现的显着差异。这种不准确的自我评估为XAI呈现了一个障碍,因为人类接受者可能无法正确理解或实施对AI战略的解释。我们已经开发并测试了一种小说,通过观察人类行为来估计人类策略。通过神经网络,这允许直接计算改善人类策略所需的权重的变化,以更好地模拟更成功的AI。受到限制(例如稀疏性)这些重量变化可以被解释为对人类策略的建议改变(例如“值更大,并且价值B更少”)。来自AI的指令,例如这种功能,都可以帮助人类在任务中表现更好,而且还可以更好地理解,预测和纠正AI的动作。结果将提出AI教学改善Hanabi在Hanabi的人力决策和人类的能力。
translated by 谷歌翻译
成本敏感的分类对于错误分类错误的成本差异很大,至关重要。但是,过度参数化对深神经网络(DNNS)的成本敏感建模构成了基本挑战。 DNN完全插值训练数据集的能力可以渲染DNN,纯粹在训练集上进行评估,无效地区分了成本敏感的解决方案和其总体准确性最大化。这需要重新思考DNN中的成本敏感分类。为了应对这一挑战,本文提出了一个具有成本敏感的对抗数据增强(CSADA)框架,以使过度参数化的模型成本敏感。总体想法是生成针对性的对抗示例,以推动成本感知方向的决策边界。这些有针对性的对抗样本是通过最大化关键分类错误的可能性而产生的,并用于训练一个模型,以更加保守的对成对的决策。公开可用的有关著名数据集和药物药物图像(PMI)数据集的实验表明,我们的方法可以有效地最大程度地减少整体成本并减少关键错误,同时在整体准确性方面达到可比的性能。
translated by 谷歌翻译
大脑和计算机之间的关系通常只是隐喻。但是,实际上可以在任何媒体中实现真正的计算系统。因此,人们可以认真对待大脑从字面上计算的观点。但是,如果没有使物理系统真正成为计算系统的经验标准,计算仍然是一个视角问题,尤其是对于没有明确设计和设计为计算机的自然系统(例如,大脑)。来自物理计算机和数字,当代和历史记录的实际示例的考虑因素清楚了这些经验标准。最后,将这些标准应用到大脑中显示了我们如何将大脑视为计算机(可能是类似的计算机),这反过来又阐明了该主张既有信息又可以伪造。
translated by 谷歌翻译
机器学习和临床研究社区利用现实世界数据(RWD)的方法,包括电子健康记录中捕获的数据(EHR)截然不同。虽然临床研究人员谨慎使用RWD进行临床研究,但用于医疗团队的ML会消费公共数据集,并以最少的审查来开发新算法。这项研究通过开发和验证ML-DQA来弥合这一差距,ML-DQA是基于RWD最佳实践的数据质量保证框架。 ML-DQA框架适用于两个地理位置的五个ML项目,分别是不同的医疗状况和不同的人群。在这五个项目中,共收集了247,536名患者的RWD,共有2,999项质量检查和24份质量报告。出现了五种可推广的实践:所有项目都使用类似的方法来分组冗余数据元素表示;所有项目都使用自动实用程序来构建诊断和药物数据元素;所有项目都使用了一个共同的基于规则的转换库;所有项目都使用统一的方法将数据质量检查分配给数据元素;所有项目都使用类似的临床裁决方法。包括临床医生,数据科学家和受训者在内的平均有5.8个人参与每个项目实施ML-DQA,每个项目平均进行了23.4个数据元素。这项研究证明了ML-DQA在医疗项目中的重要性作用,并为团队提供了开展这些基本活动的框架。
translated by 谷歌翻译
这项工作提出了一个新颖的框架CISFA(对比图像合成和自我监督的特征适应),该框架建立在图像域翻译和无监督的特征适应性上,以进行跨模式生物医学图像分割。与现有作品不同,我们使用单方面的生成模型,并在输入图像的采样贴片和相应的合成图像之间添加加权贴片对比度损失,该图像用作形状约束。此外,我们注意到生成的图像和输入图像共享相似的结构信息,但具有不同的方式。因此,我们在生成的图像和输入图像上强制实施对比损失,以训练分割模型的编码器,以最大程度地减少学到的嵌入空间中成对图像之间的差异。与依靠对抗性学习进行特征适应的现有作品相比,这种方法使编码器能够以更明确的方式学习独立于域的功能。我们对包含腹腔和全心的CT和MRI图像的分割任务进行了广泛评估。实验结果表明,所提出的框架不仅输出了较小的器官形状变形的合成图像,而且还超过了最先进的域适应方法的较大边缘。
translated by 谷歌翻译
在过去的二十年中,癫痫发作检测和预测算法迅速发展。然而,尽管性能得到了重大改进,但它们使用常规技术(例如互补的金属氧化物 - 轴导剂(CMO))进行的硬件实施,在权力和面积受限的设置中仍然是一项艰巨的任务;特别是当使用许多录音频道时。在本文中,我们提出了一种新型的低延迟平行卷积神经网络(CNN)体系结构,与SOTA CNN体系结构相比,网络参数少2-2,800倍,并且达到5倍的交叉验证精度为99.84%,用于癫痫发作检测,检测到99.84%。癫痫发作预测的99.01%和97.54%分别使用波恩大学脑电图(EEG),CHB-MIT和SWEC-ETHZ癫痫发作数据集进行评估。随后,我们将网络实施到包含电阻随机存储器(RRAM)设备的模拟横梁阵列上,并通过模拟,布置和确定系统中CNN组件的硬件要求来提供全面的基准。据我们所知,我们是第一个平行于在单独的模拟横杆上执行卷积层内核的人,与SOTA混合Memristive-CMOS DL加速器相比,潜伏期降低了2个数量级。此外,我们研究了非理想性对系统的影响,并研究了量化意识培训(QAT),以减轻由于ADC/DAC分辨率较低而导致的性能降解。最后,我们提出了一种卡住的重量抵消方法,以减轻因卡住的Ron/Roff Memristor重量而导致的性能降解,而无需再进行重新培训而恢复了高达32%的精度。我们平台的CNN组件估计在22nm FDSOI CMOS流程中占据31.255mm $^2 $的面积约为2.791W。
translated by 谷歌翻译
在临床实践中,由于较短的获取时间和较低的存储成本,通常使用了平面分辨率低的各向异性体积医学图像。然而,粗分辨率可能导致医生或计算机辅助诊断算法的医学诊断困难。基于深度学习的体积超分辨率(SR)方法是改善分辨率的可行方法,其核心是卷积神经网络(CNN)。尽管进展最近,但这些方法受到卷积运算符的固有属性的限制,卷积运算符忽略内容相关性,无法有效地对远程依赖性进行建模。此外,大多数现有方法都使用伪配合的体积进行训练和评估,其中伪低分辨率(LR)体积是通过简单的高分辨率(HR)对应物的简单降解而产生的。但是,伪和现实LR之间的域间隙导致这些方法在实践中的性能不佳。在本文中,我们构建了第一个公共实用数据集RPLHR-CT作为体积SR的基准,并通过重新实现四种基于CNN的最先进的方法来提供基线结果。考虑到CNN的固有缺点,我们还提出了基于注意力机制的变压器体积超分辨率网络(TVSRN),完全与卷积分配。这是首次将纯变压器用于CT体积SR的研究。实验结果表明,TVSRN在PSNR和SSIM上的所有基准都显着胜过。此外,TVSRN方法在图像质量,参数数量和运行时间之间取得了更好的权衡。数据和代码可在https://github.com/smilenaxx/rplhr-ct上找到。
translated by 谷歌翻译
通过纵向病变跟踪评估病变进展和治疗反应在临床实践中起着至关重要的作用。当手动进行病变匹配时,该任务的自动化方法是由劳动力成本和时间消耗的促进的。以前的方法通常缺乏本地和全球信息的集成。在这项工作中,我们提出了一种基于变压器的方法,称为变压器病变跟踪器(TLT)。具体而言,我们设计了一个基于注意力的变压器(CAT),以捕获和组合全球和本地信息以增强特征提取。我们还开发了一个基于注册的解剖注意模块(RAAM),以向CAT介绍解剖信息,以便它可以专注于有用的特征知识。提出了一种稀疏选择策略(SSS),用于选择特征和减少变压器训练中的内存足迹。此外,我们使用全球回归来进一步提高模型性能。我们在公共数据集上进行实验,以显示我们方法的优势,并发现我们的模型性能使欧几里得中心的平均误差至少提高了至少14.3%(6mm vs. 7mm),而不是先进的ART(SOTA) )。代码可在https://github.com/tangwen920812/tlt上找到。
translated by 谷歌翻译
对于放射科医生和深度学习算法而言,MRI的早期前列腺癌检测和分期是极具挑战性的任务,但是向大型和多样化数据集学习的潜力仍然是提高其内部和整个诊所的概括能力的有希望的途径。为了对原型阶段算法进行此项启用,其中大多数现有研究仍然存在,在本文中,我们引入了一个灵活的联合学习框架,用于跨站点培训,验证和评估深前列腺癌检测算法。我们的方法利用了模型体系结构和数据的抽象表示,该表示允许使用NVFlare联合学习框架对未打磨的原型深度学习模型进行培训。我们的结果表明,使用专门的神经网络模型以及在加利福尼亚大学两家研究医院收集的专门神经网络模型以及不同的前列腺活检数据的前列腺癌检测和分类精度的提高,这证明了我们方法在适应不同数据集并改善MR-Biomarker发现的方法方面的功效。我们开源的FLTOOLS系统可以很容易地适应其他深度学习项目进行医学成像。
translated by 谷歌翻译